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(S3.1)
(i) (X, 1x) is minimal if and only if | X| = 1.
(i) If (X, T) is minimal, then T is surjective.

)

)
(iii) A factor of a minimal TDS is also minimal.
(iv) If a product TDS is minimal, then so are each of its components.
)

(v) If (X1,Tx,), (X2,Tx,) are two minimal subsystems of a TDS (X,T), then either
XlﬂXQZ(DOI'Xl :XQ.

(vi) A disjoint union of two TDSs is never a minimal TDS.
Proof. (i) Remark that for all z € X, O, (z) = {z}.

(ii) By Corollary 1.3.10, there exists a nonempty closed set B C X such that T'(B) = B.
Since (X, T) is minimal, we must have B = X.

(i) Let (X,T") be minimal and ¢ : (X,7) — (Y,S) be a surjective homomorphism.
Assume () # A C Y is a nonempty closed S-invariant subset of Y. We have to prove
that A =Y. Let B := ¢ '(A) C X. Then B is closed and nonempty, since ¢ is
continuous and surjective. Furthermore,

T(B) = T(¢'(A) ={Tz | p(x) € A} C{Tx | (Sop)(x) € A}
since (Sop)(x) € S(A) C A
= {Tz|(poT)(x) € A} S '(A) =B.

Thus, B is a nonempty closed T-invariant subset of X, so we must have B = X.
Using again the surjectivity of ¢, it follows that

Y =p(X) =¢p(p'(4) = A



(iv) By (iii) and Proposition 1.3.12.(ii).

(v) We have that X7, X5 are nonempty closed T-invariant subsets of X. Let Y := X;NXs.
Then Y is a closed Ty, -invariant subset of X; (resp. a closed T,-invariant subset of
X3), hence from minimality we must have Y =0 or Y = X; = Xj.

(vi) By Lemma 1.3.15.(i).
[

(S3.2) Let (X,T) be a TDS and assume that X is metrizable. For any x € X, the
following are equivalent:

(i) x is recurrent.

(ii) klim Tz = x for some sequence (ny) in Z,.
—00

(iii) lim 7™z = x for some sequence (ng) in Z, such that lim ny = oco.

k—o0 k—o0
Proof. (ii1) = (i1) Obviously.
(17) = (i) Let U be an open neighborhood of z. Since lim 7"z = z, there exists K € Z

such that T™x € U for all k¥ > K. b

(1) = (iii) Use the fact that x is infinitely recurrent, by Proposition 1.6.3. Then Sy :=
rt (x, Bl/k(:c)) is an infinite set for every k > 1. Define ny := min Sy, ngyq := min Spiq \
{nr}. Then (ny) is a strictly increasing sequence of positive integers, so klgg(} nE = 00.

Furthermore, d(z, T™z) < 1/k for all kK > 1, hence lim 7™z = z. O

k—o00

(S3.3)

(i) If ¢ : (X, T) — (Y, S) is a homomorphism of TDSs and x € X is recurrent (almost
periodic) in (X, T), then ¢(x) is recurrent (almost periodic) in (Y, .S).

(i) If (A,T4) is a subsystem of (X,7) and = € A, then z is recurrent (almost periodic)
in (X, T) if and only if z is recurrent (almost periodic) in (A, Ty).

Proof. (i) Let V be an open neighborhood of ¢(x). Since ¢ is continuous, there exists
an open neighborhood U of x such that p(U) C V.

(a) As z is recurrent in (X, T'), we have that 7"z € U for some n > 1. We get that
S"(p(w)) = p(I"z) € p(U) C V.

It follows that o(z) is recurrent in (X, 7).



(b) As z is almost periodic in (X, T"), we have that there exists N > 1 such that for
all m > 1 there exists k € [m,m + N] such that T*z € U. We get that

SH(p(x)) = p(T*z) € p(U) C V.
It follows that o(z) is almost periodic in (X, 7).
(ii) <= Use (i) and the fact the inclusion j4 : (A, T4) — (X, T) is a homomorphism.
= If U is an open neighborhood of z in A, then U = ANV, where V is an open
neighborhood of z in X.

(a) If = is recurrent in (X,7"), we have that 7"z € V for some n > 1. It follows
that Thx = T"x € ANV = U. Thus, z is recurrent in (A, Ty).

(b) If x is almost periodic in (X, T'), we have that there exists N > 1 such that for
all m > 1 there exists k € [m,m + N] such that 7%z € V. Conclude as above
that Thx = T*x € U. Thus, x is almost periodic in (A, Th).

]

(S3.4) Let (X,T) be a TDS. The following are equivalent:
(i) (X,T) is minimal.
(ii) every point of X is forward transitive and almost periodic.
(iii) there exists a forward transitive point xp € X which is also almost periodic.
Proof. (i) = (i1) Apply Propositions 1.5.3.(ii) and 1.6.9.
(17) = (4i7) Obviously.

(iii) = (i) Let zo be a forward transitive point, hence O, (z) = X. Since z is almost
periodic, we can apply (54.2) to conclude that (X,7) is minimal. O

(S3.5) Let (X,T) be a TDS and = € X. The following are equivalent:
(i) « is almost periodic.

(ii) For any open neighborhood U of z, there exists N > 1 such that

(iii) (O, (x), 15, (»)) is a minimal subsystem.



Proof. (i) = (i4) We have obviously that 2 € U = T°(U), so let T™x with m > 1. Since
rt(x, U) is syndetic, it follows that there exists N > 1 such that rt(x,U) N [m, m+ M] # ()
for all m > 1. Thus, there exists p € [m, m + N| such that TPz € U. Letting k :=p—m €
[0, N], we get that T*(T™x) = TPz € U, hence T™x € T~*(U).

(43) = (i7i) We shall prove that O, (y) is dense in O, (x) for every y € O, (x), and then
apply Proposition 1.5.3 to conclude minimality. It suffices to show that x € O (y). Let U
be an open neighborhood of x. Then, by B.10.7.(i), there exists an open neighborhood V'
of z such that V C U. By (ii), we have an N > 1 such that

It follows that

yeO,(x)c W) c T *M0U).

k=0 k=0

This implies T*y € U for some k£ =0,..., N. Thus, O, (y)NU # (B for any open neighbor-
hood U of z, that is z € O, (y).
(73i) = (i) Apply Proposition 1.6.9 and Lemma 1.6.7.(ii). O



