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(S3.1)

(i) (X, 1X) is minimal if and only if |X| = 1.

(ii) If (X, T ) is minimal, then T is surjective.

(iii) A factor of a minimal TDS is also minimal.

(iv) If a product TDS is minimal, then so are each of its components.

(v) If (X1, TX1
), (X2, TX2

) are two minimal subsystems of a TDS (X, T ), then either
X1 ∩ X2 = ∅ or X1 = X2.

(vi) A disjoint union of two TDSs is never a minimal TDS.

Proof. (i) Remark that for all x ∈ X, O+(x) = {x}.

(ii) By Corollary 1.3.10, there exists a nonempty closed set B ⊆ X such that T (B) = B.
Since (X, T ) is minimal, we must have B = X.

(iii) Let (X, T ) be minimal and ϕ : (X, T ) → (Y, S) be a surjective homomorphism.
Assume ∅ 6= A ⊆ Y is a nonempty closed S-invariant subset of Y . We have to prove
that A = Y . Let B := ϕ−1(A) ⊆ X. Then B is closed and nonempty, since ϕ is
continuous and surjective. Furthermore,

T (B) = T (ϕ−1(A)) = {Tx | ϕ(x) ∈ A} ⊆ {Tx | (S ◦ ϕ)(x) ∈ A}

since (S ◦ ϕ)(x) ∈ S(A) ⊆ A

= {Tx | (ϕ ◦ T )(x) ∈ A} ⊆ ϕ−1(A) = B.

Thus, B is a nonempty closed T -invariant subset of X, so we must have B = X.
Using again the surjectivity of ϕ, it follows that

Y = ϕ(X) = ϕ(ϕ−1(A)) = A.



(iv) By (iii) and Proposition 1.3.12.(ii).

(v) We have that X1, X2 are nonempty closed T -invariant subsets of X. Let Y := X1∩X2.
Then Y is a closed TX1

-invariant subset of X1 (resp. a closed TX2
-invariant subset of

X2), hence from minimality we must have Y = ∅ or Y = X1 = X2.

(vi) By Lemma 1.3.15.(i).

(S3.2) Let (X, T ) be a TDS and assume that X is metrizable. For any x ∈ X, the
following are equivalent:

(i) x is recurrent.

(ii) lim
k→∞

T nkx = x for some sequence (nk) in Z+.

(iii) lim
k→∞

T nkx = x for some sequence (nk) in Z+ such that lim
k→∞

nk = ∞.

Proof. (iii) ⇒ (ii) Obviously.
(ii) ⇒ (i) Let U be an open neighborhood of x. Since lim

k→∞

T nkx = x, there exists K ∈ Z+

such that T nkx ∈ U for all k ≥ K.
(i) ⇒ (iii) Use the fact that x is infinitely recurrent, by Proposition 1.6.3. Then Sk :=
rt

(

x, B1/k(x)
)

is an infinite set for every k ≥ 1. Define n1 := min S1, nk+1 := min Sk+1 \
{nk}. Then (nk) is a strictly increasing sequence of positive integers, so lim

k→∞

nk = ∞.

Furthermore, d(x, T nkx) < 1/k for all k ≥ 1, hence lim
k→∞

T nkx = x.

(S3.3)

(i) If ϕ : (X, T ) → (Y, S) is a homomorphism of TDSs and x ∈ X is recurrent (almost
periodic) in (X, T ), then ϕ(x) is recurrent (almost periodic) in (Y, S).

(ii) If (A, TA) is a subsystem of (X, T ) and x ∈ A, then x is recurrent (almost periodic)
in (X, T ) if and only if x is recurrent (almost periodic) in (A, TA).

Proof. (i) Let V be an open neighborhood of ϕ(x). Since ϕ is continuous, there exists
an open neighborhood U of x such that ϕ(U) ⊆ V .

(a) As x is recurrent in (X, T ), we have that T nx ∈ U for some n ≥ 1. We get that

Sn(ϕ(x)) = ϕ(T nx) ∈ ϕ(U) ⊆ V.

It follows that ϕ(x) is recurrent in (X, T ).



(b) As x is almost periodic in (X, T ), we have that there exists N ≥ 1 such that for
all m ≥ 1 there exists k ∈ [m, m + N ] such that T kx ∈ U . We get that

Sk(ϕ(x)) = ϕ(T kx) ∈ ϕ(U) ⊆ V.

It follows that ϕ(x) is almost periodic in (X, T ).

(ii) ⇐ Use (i) and the fact the inclusion jA : (A, TA) → (X, T ) is a homomorphism.
⇒ If U is an open neighborhood of x in A, then U = A ∩ V , where V is an open
neighborhood of x in X.

(a) If x is recurrent in (X, T ), we have that T nx ∈ V for some n ≥ 1. It follows
that T n

Ax = T nx ∈ A ∩ V = U . Thus, x is recurrent in (A, TA).

(b) If x is almost periodic in (X, T ), we have that there exists N ≥ 1 such that for
all m ≥ 1 there exists k ∈ [m, m + N ] such that T kx ∈ V . Conclude as above
that T k

Ax = T kx ∈ U . Thus, x is almost periodic in (A, TA).

(S3.4) Let (X, T ) be a TDS. The following are equivalent:

(i) (X, T ) is minimal.

(ii) every point of X is forward transitive and almost periodic.

(iii) there exists a forward transitive point x0 ∈ X which is also almost periodic.

Proof. (i) ⇒ (ii) Apply Propositions 1.5.3.(ii) and 1.6.9.
(ii) ⇒ (iii) Obviously.
(iii) ⇒ (i) Let x0 be a forward transitive point, hence O+(x) = X. Since x0 is almost
periodic, we can apply (S4.2) to conclude that (X, T ) is minimal.

(S3.5) Let (X, T ) be a TDS and x ∈ X. The following are equivalent:

(i) x is almost periodic.

(ii) For any open neighborhood U of x, there exists N ≥ 1 such that

O+(x) ⊆
N
⋃

k=0

T−k(U).

(iii) (O+(x), T
O+(x)) is a minimal subsystem.



Proof. (i) ⇒ (ii) We have obviously that x ∈ U = T 0(U), so let Tmx with m ≥ 1. Since
rt(x, U) is syndetic, it follows that there exists N ≥ 1 such that rt(x, U)∩ [m, m + M ] 6= ∅
for all m ≥ 1. Thus, there exists p ∈ [m, m + N ] such that T px ∈ U . Letting k := p−m ∈
[0, N ], we get that T k(Tmx) = T px ∈ U , hence Tmx ∈ T−k(U).
(ii) ⇒ (iii) We shall prove that O+(y) is dense in O+(x) for every y ∈ O+(x), and then
apply Proposition 1.5.3 to conclude minimality. It suffices to show that x ∈ O+(y). Let U
be an open neighborhood of x. Then, by B.10.7.(i), there exists an open neighborhood V
of x such that V ⊆ U . By (ii), we have an N ≥ 1 such that

O+(x) ⊆
N
⋃

k=0

T−k(V ) ⊆
N
⋃

k=0

T−k(V ).

It follows that

y ∈ O+(x) ⊆
N
⋃

k=0

T−k(V ) ⊆
N
⋃

k=0

T−k(U).

This implies T ky ∈ U for some k = 0, . . . , N . Thus, O+(y)∩U 6= ∅ for any open neighbor-
hood U of x, that is x ∈ O+(y).
(iii) ⇒ (i) Apply Proposition 1.6.9 and Lemma 1.6.7.(ii).


